

FINAL DESIGN REPORT April, 2022

Division : Office Building

TABLE OF CONTENT

1.0	Executive Summary4
2.1 2.2 2.3 2.4	Team Summary
3.1 3.2	Documentation of Design Process
4.1 4.2 4.3 4.4 4.5	Project Background
	Performance specifications12
5.0	<u>Goals</u> 13
6.0 6.1 6.2 6.3 6.4	Goals
6.0 6.1 6.2 6.3 6.4 6.5 7.0 7.1 7.2 7.3 7.4 7.5 7.5 7.6 7.7	Documentation of Design Process
6.0 6.1 6.2 6.3 6.4 6.5 7.0 7.1 7.2 7.3 7.4 7.5 7.5 7.5 7.6 7.7 7.8	Documentation of Design Process 14 Pre-Design Analysis 14 Thermal Comfort analysis 15 Design and form Development 16 Zoning 16 Design Documentation 16 Architectural Design 16 Energy Performance 16 Water Performance 16 Innovation 16 Architectural Design 16 Besilience 16 Affordability 16

LIST OF FIGURES

Fig 1: Team Members

- Fig 2: Faculty Members
- Fig 3: Design Process Flow
- Fig 4: Tools Used
- Fig 5: Google Earth Image of Site
- Fig 6: Site Plan
- Fig 7 : Goals and Strategies
- Fig 8: Psychrometric Chart
- Fig 9: Adaptive Comfort band for mixed mode of office building
- Fig 10:Thermal simulation proposed case
- Fig 11:Adaptive Comfort band overlay on annual simulation graph
- Fig 12: Relative Humidity Graphs
- Fig 13: modes of operation throughout the year
- Fig 14:Design Development
- Fig 15:Zoning
- Fig 16: Site Analysis
- Fig 17:Form Development
- Fig 18: Floor Plans
- Fig 19:Longitudinal sections
- Fig 20:Rendered exterior view
- Fig 21:Transverse section
- Fig 22: design strategies
- Fig 22:Path to net zero buildings
- Fig 23:Comparison between AAC blocks
- Fig 24: Wall and Roof Details
- Fig 25:Comparison between VRF and Radiant Cooling Systems
- Fig 26:Solar Irradiance simulations
- Fig 27:Solar PV Layout
- Fig 28: Schematic working of PV panels
- Fig 29:Water cycle diagram
- Fig 30:Unused greywater
- Fig 31: Harvested Rain Water
- Fig 32:Storage and Demand
- Fig 33:Water consumption Comparison
- Fig 34: Tank sizing
- Fig 35:Section of water fixtures
- Fig 36:Black water flow chart diagram
- Fig 37:Rainwater flow chart
- Fig 38:Plan showing water fixtures
- Fig 39: Green planter strip drain detail
- Fig 40: Foundation footing and column layout
- Fig 41:Two way structural slab
- Fig 42:Bending moment analyses of structural beams and columns
- Fig 43:Beam and column reinforcement detail
- Fig 44:Detail of radiant cooling system integrated in structural slab
- Fig 45:Footing Detail
- Fig 46:Attachment detail of hePEX Tubing
- Fig 47:Lighting layout Plan
- Fig 47: Analysis of lighting layout
- Fig 48: Equipment Layout Plan
- Fig 49:Operational zones for air conditioning for typical office floor
- Fig 50:Section Air Conditioning system
- Fig 51:HVAC Detail
- Fig 52:Slab detail of radiant cooling
- Fig 53:Water purification system

- Fig 54:Section- water purification system
- Fig 55:Window detail southern Facade
- Fig 56:Vertical shading device southern window
- Fig 57:Types of plants used
- Fig 58: Assessment of site angle of occupants
- Fig 59:Interior view of workstation
- Fig 60:Plan of irresistible staircase
- Fig 61:Daylight illuminance levels
- Fig 62:sDA Analysis
- Fig 63:ASE, UDI and DAA
- Fig 64:Front elevation showing noise absorbing panels
- Fig 65: Process of electricity generation
- Fig 66:Irresistible staircase elevation
- Fig 67:Terracotta tiles
- Fig 68:Interior view of irresistible staircase
- Fig 69:Resilience strategies
- Fig 70: Fire Escape Layout
- Fig 71: Recovery Plan
- Fig 72:Operational Cost and financial breakup
- Fig 73: Comparison of base case and proposed case
- Fig 74: Maintenance cost over 10 yrs for VRF vs Radiant Cooling
- Fig 75:Radiant Cooling VS VRF Cooling System
- Fig 76: Comparison of brick and AAC costing
- Fig 77:Corridor layout
- Fig 78:Potential Target Market
- Fig 79:Irresistible staircase view
- Fig 80:Exterior View
- Fig 81:Exterior view
- Fig 82:Flow chart of green building

LIST OF TABLES

- Table 1: Area Programme
- Table 2: Base vs Proposed Construction Budget
- Table 3: Perforation Specification
- Table 4: IMAC MM 90% acceptability comfort bands
- Table 5: Envelope optimization for thermal comfort
- Table 6:U values
- Table 7:Solar radiation and electricity generation
- Table 8:Water Balance
- Table 9:Per capita consumption
- Table 10:Blackwater and greywater generation
- Table 11: Water Harvesting sources
- Table 12: Municipal supply and storage size
- Table 13: Water consumption per day
- Table 14: Base case water consumption as per NBC
- Table 15: Proposed case per capita consumption
- Table 16:Daily water consumption
- Table 17: Flow rate of fixtures
- Table 18:Rate of lighting fixtures
- Table 19: Lighting load calculation
- Table 20:Rate of equipment used
- Table 21: Equipment load calculation
- Table 22: Cooling load calculation
- Table 23: HVAC Equipment
- Table 24: Preventive maintenance
- Table 25: Fire safety requirements
- Table 26:Cost analysis for circuit analysis

EXECUTIVE SUMMARY

"Businesses, governments, and NGOs hold the key to this transformation, but they must commit to aggressive action. It is possible to create a world in which every single building produces zero carbon emissions, but we must start today."

- Terri Wills, CEO of the World Green Building Council

The building sector, which is responsible for global emissions roughly equivalent to that of China, is in a dire need of transformation from its norm. We, the Team Ecocult as part of the Solar Decathlon India, have taken up this opportunity to try and design a net-zero-energy-water building for Team Global Logistics' new regional office in Chennai.

This project, SAT- PRANALI, is a G+4 story build-own/lease operate a commercial building, whose 3rd and 4th floors are going to be the office for Team Global, while the 1st and 2nd floors are planned to be rented out to their sister companies. Our aim was to provide the most cost-effective net-zero energy-water solution by integrating the various infrastructural needs of the project by working on various aspects of design, production, and execution.

With careful consideration of all the building science principles and affordability, by carrying out pre-design comfort & energy simulation we developed an optimized building massing having a huge potential for obtaining thermal comfort through natural lighting and operating the building on mixed-mode ventilation.

With a built-up area of **2486.12 sqm**, our final building design has been able to achieve an EPI of **45 kWh/sqm/year**, (a significant reduction of **56.5 %** from the GRIHA benchmark) achieving its net-zero target through solar PV generation **120485 kWh/day**. The design is also Net-zero water, combining efficient water consumption measures coupled with rainwater harvesting and wastewater recycling systems. Thus, the proposal is able to achieve a **62.8%** consumption reduction from the base case and Water Performance Index of **14.6Lpd** due to on-site rainwater and stormwater management and sewage treatment.

With each direction having its own constraints, the façade has been designed based on the requirement and with the thought of how it can cater to the indoor comfort need along with the appearance and aesthetic factors. By properly calculating Wall-Window Ratio (WWR), we have achieved IMAC mixed-mode ventilation with **30%** natural ventilation and **100%** comfortable operating hours.

Through the constant back and forth process, an initial search and exploration of all possible options, and setting the goals right, the focus has been to reduce not only energy & water consumption but also to address the well-being of users and the challenges of affordability & marketability, resulting to the proposal whose incremental construction cost is increased by **3.7%** from the base case, but in long run ,the proposal proves to be efficient than the base case.

TEAM INTRODUCTION

TEAM NAME : ECO CULT

INSTITUTION(s) NAME : RV College of Architecture , RV College of Engineering

DIVISION : Office Building

TEAM MEMBERS :

APPROACH

Team Ecocult comprises student members with a diverse skillset. The approach to organizing the team involved introspecting and realizing each member's strengths and fields of interest. Roles and responsibilities were assigned in a flexible manner while simultaneously considering the 10 contests. The various topics were addressed as a team and decisions were made democratically. The plan was to approach the design head-on by establishing a robust understanding of the financially viable design options, along with the site context and climatic parameters to arrive at the design goals that conform to our aim of creating a comfortable, high-performance building.

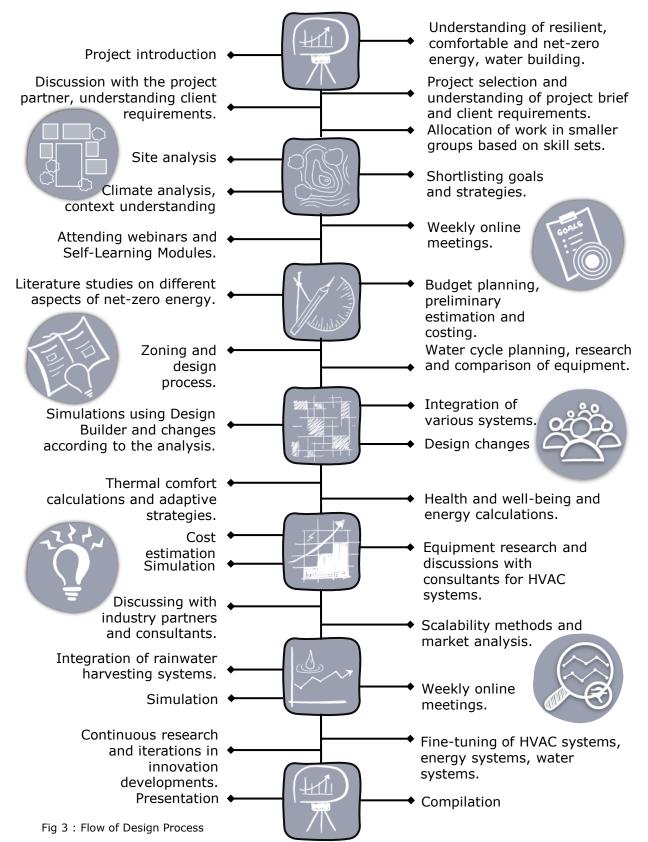
BACKGROUND OF LEAD INSTITUTE:

R.V. College of Architecture (RVCA), was established in 1992, as the Department of Architecture in R. V. College of Engineering (RVCE), Bengaluru. In 2014 they shifted to a new campus and function independently with a vision of being an architecture institute par excellence, nurturing academics, profession, and research for a sustainable contemporary society.

FACULTY LEAD: Prof. Girish Ramanathan

Fig 2 : Faculty Members

FACULTY ADVISOR: Ms. Anupriya Saxena



INDUSTRY PARTNERS

Blue Star is India's leading air conditioning and commercial refrigeration company along with other businesses which include marketing and maintenance of imported professional electronics and industrial products and systems.

DOCUMENTATION OF DESIGN PROCESS

Team Ecocult followed an integrated design approach by establishing the goals of each contest and their interrelations. The design process started with understanding the site and its strengths through SWOT analysis. This was further integrated with a climate analysis and understanding of the micro-climate of Mylapore, Chennai.

olders			Name 1
D 3	Instagram posts	Meeting_Records	MOMs
PREDESIGN	Project Partner	Referances	Topics
	EXALLAS Facilita handra y factor attention in and a strategy results attention bard of advances have a region attention ESEC FACION THE Conference and former, after MECH CARLENES MECH CARLENES FACIONAL STREEL	ATORNA • Long train ALCONT • Contractor connector connector	S S S S S S S S S S S S S S S S S S S S
BEE_ECBC 2017.pdf	And ministry estimate on threewald energy parced on the medicing matching - mergy and thermal medicing single block models and the single single single single single and single	Sutarto fi Area page Orace mit A subject Plata seriori Contest Interests xisx	Letter of conformation_pri

weekly Constant meetings with the team scheduled, were to strengthen the process and achieve the goals. The minutes of meetings were recorded and proper planning of weekly goals and targets was done to avoid end delays. All the research done was added to the drive for future references.

CHALLENGES FACED & APPROACH TAKEN TO OVERCOME:

The team faced constant difficulty in finalizing the best solution among the shortlisted options. Further meetings were scheduled with various specialists and consultants to guide us in the selection process of the best solution among the shortlisted possible solutions. Simulations were run regularly to compare base cases and shortlisted system efficiency to finalize one particular option. We would like to take this opportunity to thank **Ar. Indranil Bhattacharya** (BRAE Consulting Services Pvt. Ltd), **Mrs. Mini Sastry** (Consultant at IFC), Mr. **Suresh K Murthy** (Dean of RVCA) and **Mr. Saikat Banerjee** (Pinnacle Consulting Engineers) for providing guidance to the team in this journey.

PROJECT BACKGROUND

PROJECT NAME: SAT-PRANALI

PROJECT PARTNER: TEAM GLOBAL

Team Global is an integrated Logistics services provider headquartered in Mumbai, India. They offer services in multiple segments of logistics Viz. Sea Freight, Airfreight, Project Cargo Transportation, Cargo Terminals and Coastal Shipping. Being a Non-govt company, incorporated on 25 Apr 2005; it has 18 offices in India, Bangladesh, Kenya and Tanzania. (<u>https://www.teamglobal.in/</u>)

NAME & DESIGNATION OF KEY INDIVIDUAL INVOLVED: Vivek Kele, Director at Team Global Logistics Pvt Ltd

BRIEF DESCRIPTION OF THE PROJECT: Team Global wanted to open its regional office in Chennai, for which they had acquired a plot of 8400 sq. ft in P.V Kovil Street. Their intent is to create an eco-sensitive building while availing maximum FSI. Being a <u>build-own/lease-operate</u> building, two floors will be utilized by the Team Global and the other floors are to be rented out to their sister companies.

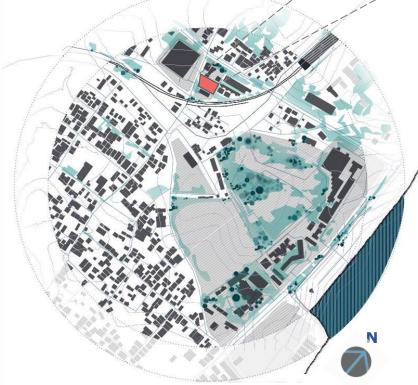

LOCATION: Mylapore, Chennai LATITUDE: 13° 2'33.77"N LONGITUDE: 80°16'28.99"E CLIMATE ZONE: Warm & Humid PROFILE OF OCCUPANTS: White-collar workers HOURS OF OCCUPATION: 9 am – 5 pm CURRENT STATUS OF THE PROJECT: Waiting for approval (was on hold due to pandemic)

Fig 5 : Google Earth image of the site

CONTEXT

The site is located on a busy street with a city central mall (140m away) on the opposite side, and right next to the Mediscan building. While the shoreline is 815 m away, the Gandhi beach is just 582 m from the site on the eastern side. On the southern side of the site, there is a railway line and canal as well.

SPECIAL REQUIREMENTS OF THE PROJECT PARTNER:

Since this building is designed to be the south zone regional office for Team Global, the client has requested for the logo to be displayed on the West side facing the road.

AREA STATEMENT

As per Tamil Nadu combined development building rules, the site is classified under CBA, hence there are no side and rear setbacks. The front setback is left based on the road width. The maximum FSI allowed is 3.15

SITE AREA	780.67 sqm
PERMISSIBLE BUILT UP AREA	2578.45 sqm
PROPOSED BUILT UP AREA	2486.12 sqm
GROUND COVERAGE	594.54 sqm
ROOF AREA	516.67 sqm

Air-conditioned area

Non- air-conditioned area

SL NO	PARTICULARS	NOS.	AREA(sq.m)	TOTAL AREA(sq.m)
1	RECEPTION / WAITING AREA	4	28.4	113.6
2	TEAM HEADS CABIN	4	18.3	73.2
3	MEETING ROOM	4	20	80
4	MANAGER'S CABIN	4	13.24	52.96
5	ASST. MANAGER'S CABIN	4	12.46	49.84
6	WORKSTATIONS			
6.1	FIRST FLOOR	1	186.4	186.4
6.2	SECOND FLOOR	1	186.36	186.36
6.3	THIRD FLOOR	1	175.25	175.25
6.4	FOURTH FLOOR	1	165.58	165.58
7	BMS ROOM	1	13	13
8	SERVER ROOM	4	10.76	43.04
10	ELECTRICAL ROOM	1	17	17
11	STAIRCASE 1	5	21.9	109.5
12	STAIRCASE 2	5	25.4	127
13	LIFT	5	4.6	23
14	LIFT LOBBY	5	9	45
15	SHAFTS			30
16	TOILETS	4	38	152
17	PANTRY	4	18.6	74.4
18	PASSAGE	4	14	56
19	PARKING	1	516.67	516.67
20	STORAGE	4	12.5	50
	TOTAL			2,486.12

Table 1 : Area Programme

CONSTRUCTION BUDGET

oject Sun	nmary					
				Baseline Estimate (Project Partner / SOR basis)		
S.No.	Particulars	Definition	Amount (Rs Millions)	%	Amount (Rs Millions)	%
1	Land	Cost of land purchased or leased by the Project Partner	68.84	46.70%	68.84	46.70
2	Civil Works	Refer Item A, Civil works in Cost of construction worksheet	49.32	33.50%	49.22	33.40
3	Internal Works	Refer Item B, Civil works in Cost of construction worksheet	5.71	3.90%	5.93	4.00
4	MEP Services	Refer Item C, Civil works in Cost of construction worksheet	8.62	5.90%	13.23	9.00
5	Equipment & Furnishing	Refer Item D, Civil works in Cost of construction worksheet	2.62	1.80%	2.62	1.80
6	Landscape & Site Development	Refer Item E, Civil works in Cost of construction worksheet	0.17	0.10%	0.63	0.40
7	Contingency	Amount added to the total estimate for incidental and miscellaneous expenses.	7.01	5.00%	7.27	5.00
	TOTAL HARD COST		142.29	96.90%	147.74	100.40
8	Pre Operative Expenses	Cost of Permits, Licenses, Market research, Advertising etc	1.38	0.90%	1.38	0.90
9	Consultants	Consultant fees on a typical Project	3.58	2.40%	3.58	2.40
10	Interest During Construction	Interest paid on loans related to the project during construction	-	0.00%	-	0.00
	TOTAL SOFT COST		4.96	3.40%	4.96	3.409
	TOTAL PROJECT COST		147.25	100.00%	152.7	103.709
	Total Project Cost per Sq.m of Built-up Area		72,183		74,853	

Table 2 : Base vs Proposed - Construction Budget

PERFORMANCE SPECIFICATION

GENERAL	
Built up Area	2486.12 sqm
Electricity Rate	8 INR/kWh
Average occupant density	10m2/ person
Building Occupancy Hours	9:00am - 5:00pm
ENVELOPE	
Wall assembly U value	0.22 W/m2.K
Roof Assembly U value	0.21 W/m2.K
Window U value	2.2 W/m2.K
SHGC	0.5
VLT	61%
	Horizontal shading device with
Exterior Shading Device	vertical fins and plantation boxes
HVAC	
System Type	Radiant Cooling System with DOAS
Mixed Mode Strategy	Windows are open when operative temperature lies within the IMAC thermal comfort band below 29 deg. This is possible during the months of November, December and January
Cooling Capacity	37.23 TR
Operation Hours	9:00am - 5:00pm
LIGHTING	
Interior Average Lighting Power Density	0.71 W/ft2
RENEWABLE ENERGY	
Туре	Monocrystalline Photovoltaic Panels
Efficiency	19.20%
Generation Capacity	120485 kWh
Installed Capacity	80.1 kW
EPI	
Proposed EPI	45 kWh/ sqm per year
EPI Breakdown by use	
Cooling	25.24kWh/ sqm per year
Lighting	3.33kWh/ sqm per year
Equipments	14.69kWh/ sqm per year
WATER SYSTEM	
Total Daily Consumption	3368 Lpd
Domestic Requirement	3277.064 Lpd
Flushing Requirement	90.936 Lpd
Treated Black-water	5,06,827 L/year
Treated Grey-water	7,23,335 L/year
Total Treated Water	12,30,162 L/year

Table 3 : Performance Specification

GOALS

Architectural Design

To design a building that achieves a balance between form and function. (Effective implementation of passive design strategies). Efficient handling of the high humidity levels by wise use of air movement across the building. (Achieved using Double skin on western façade and usage of shading devices on southern façade to reduce the heat gain). An "irresistible staircase" provided for the health and well being of the employees as a buffer zone.

Energy Performance

To achieve a net-zero energy building with a target EPI of 54 kWh/sqm/year(GRIHA benchmark = 108 kWh/sqm/yr) (Net site energy =1,24,997 kWh; Achieved EPI = 45 kWh/sqm/year)

Water Performance

To achieve a net-zero water building. Target Water Performance Index (WPI) < 45 Lpd (Base value –from NBC). (Achieved WPI = 16.4 Lpd) To reuse and recycle greywater and treat black water efficiently on site. (Greywater - evapotranspiration & infiltration; Blackwater - composting unit)

Resilience

To create a pandemic proof design, and have all the required backup prepared in case of any emergency.

(The building can sustain with the energy produced through solar panels and has water backup for 17 days.)

Health & Wellbeing

To achieve 100% comfortable operating hours as per IMAC. (Achieved)

To provide an effective ventilation system and ensure good indoor air quality and provide visual comfort and well-being.(Achieved)

Affordability

Adapting cost effective strategies to reduce the construction cost and decrease the life cycle cost by 30%.(Achieved 34.6% reduction)

Communication

To create awareness among peers in the architecture and the general public about 'net'-zero-energy buildings and sustainable methodology. (Official Instagram - Team ECOCULT: Impressions - 7422 accounts; Reach – 3434 users; 107 accounts engaged)

Safety & Security

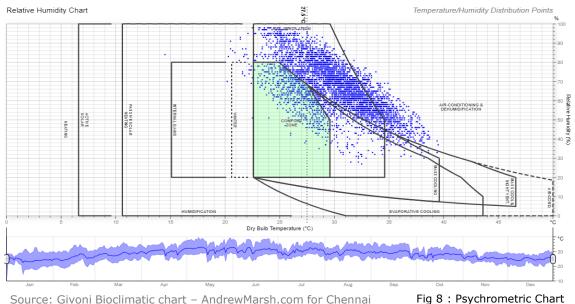
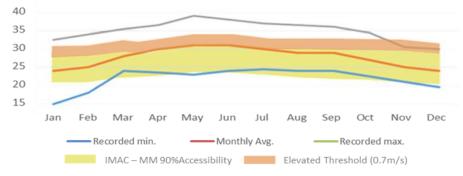

Physical protection of the assets and occupants of the office building from man made or natural accidents. (Incorporation of fire protection system and placement of First aids for emergency usage)

Fig 7 : Goals & Strategies


PRE-DESIGN ANALYSIS

The location of the project is in Chennai. It is classified as Aw. Tropical wet and dry or savanna type according to Köppen- Geiger climate zone. A detailed climatic study was conducted to understand the combination of strategies that could be adopted to enhance the building's performance and achieve 100% comfortable operational hours. Considering the relative humidity levels to be >65% (monthly average), and the Cooling Degree days (CDD) for Chennai as 4108 hours, that is, 47% annually, cooling and dehumidification are considered very essential for this type of climate.

Source: Givoni Bioclimatic chart - AndrewMarsh.com for Chennai

The IMAC (India Model for Adaptive Comfort) is developed based on thermal comfort surveys of office buildings across India. Climate analysis shows that there is a potential for utilizing favourable outdoor environmental conditions for about 7.5% of the operational period. And for about 49%, comfortable hours can be achieved through passive design strategies and natural ventilation. Hence the building is designed for a mixed-mode operation. According to IMAC, for mixed-mode buildings, the 90% accessibility is 3.5°C from the neutral temperature.

Natural Ventilation

Increased Air velocity at 0.7m/s

Fig 9 : Adaptive Comfort Band for Mixed mode office building as per IMAC , for Chennai

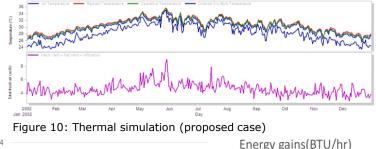
By introducing an elevated airspeed of 0.7m/s, the upper comfort threshold is further increased by 2.5°C as given by ASHRAE 55-2017. The increased airspeed is achieved through ceiling fans which allows them to adjust the temperature threshold by 2.5°C, providing comfortable hours during unconditioned times.

Operative temperature = $(0.25 \times DBT (30-day running mean)$

(Calculated using CBE Thermal comfort tool)

Passive desian strategies

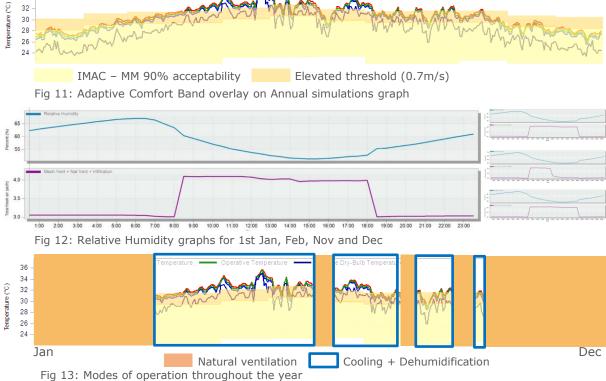
Cooling and dehumidificatio n


+17.87

Thermal Comfort Analysis

The use of low thermal conductivity materials, envelope optimization, efficient WWR and natural ventilation helped in decreasing the internal heat gain by 70 % (from the base case).

Internal heat gains due to office equipment and human metabolism and solar heat gains lead to an increase in the operative temperature indoors by about 1-2.5 degrees Celsius. However, about 1000 operational hours lie under the comfort band with 90% acceptability as shown in Figure 11.


Total	+ I AA BA Ander M	W.W.			I wath to be	mundal have a	
	2002 Feb Jan 2002	Mar Apr	May Jun	Jul Aug Day	Sep Oct	Nov Dec	
	Figure 10: T	hermal s	imulation	(proposed	case)		ŀ
4					Energy gains	(BTU/hr)	
3.5 -				250000			- 5
3 – 2.5 –				200000			
2				150000			-
1.5 -	-			100000	_		
1 - 0.5 -				50000	_		
0.5				0			
Ŭ	Base case		Proposed case		Base Case	Proposed Case	٦
	Wall U-value	Roof U-value	Window U value	0	Energy gains	s(BTU/hr)	C

Month	Mixed building Temp. Mi	Thermostat set point	
Jan	28.36	21.44	28.2
Feb	28.69	21.44	28.1
Mar	29.13	22.21	29.4
Apr	29.69 22.77		29.6
Мау	30.31 23.39		30.1
Jun	30.53 23.61		30.3
Jul	30.00	23.08	29.8
Aug	29.75 22.83		29.6
Sep	29.66 22.74		29.7
Oct	29.41 22.49		30.0
Nov	29.01 22.09		29.7
Dec	28.63	21.71	28.6

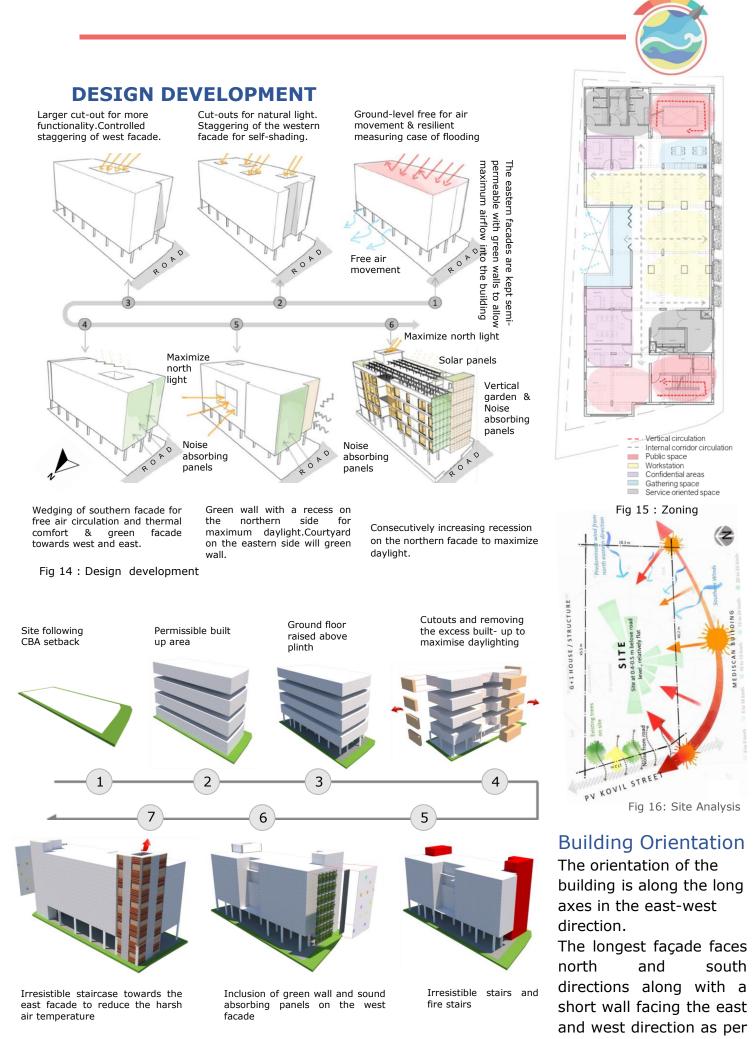

Table 5: Envelope optimization for thermal comfort

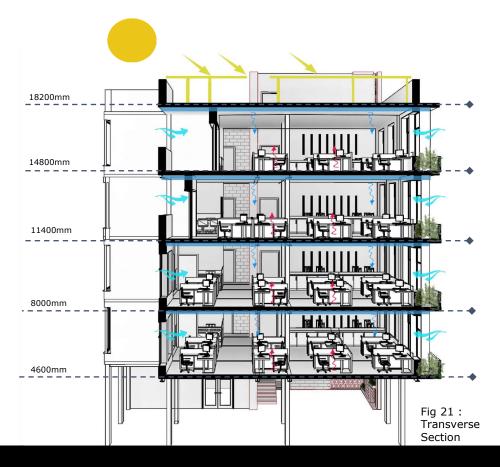
Table 4: IMAC - MM 90% acceptability comfort bands

The simulations show that for about 30% of the year, the indoor temperatures lie under the comfortable bands and cooling + dehumidification is required for the rest of the year to achieve 100% comfortable hours.

the climatic condition on

the site.

Fig 20: Rendered exterior view

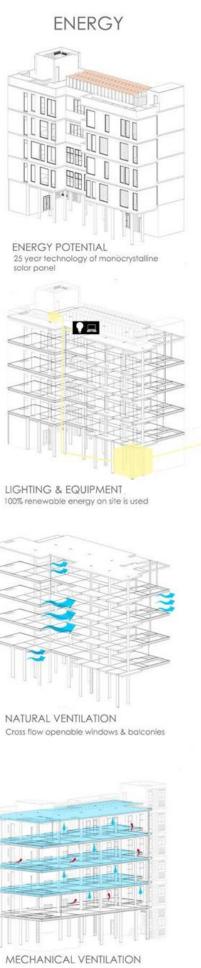

DESIGN

Northern Facade - Maximizing daylight and allowing for cross ventilation.

Southern facade - Maximizing airflow into the building and controlled light without much thermal heat gain.

Western facade - Double skin with green wall facade and noise absorbing panels to generate electricity.

Eastern facade - Irresistible staircase with planter boxes to provide airflow into the building that reduces the heat gain into the building.



DESIGN BE EE H 1 1 ŦF H FF A Team Global Office PROGRAM Other Rental Offices Parking VERTICAL Fire Tower : Staircase, Lift TRANSPORTATION Irresistible Staircase 1 12353 A 日間 H IJ Ē H FF FF 100 A I H FE FF F 100 SHADING DEVICES Horizontal shading device with vertical shades integrated with planter boxes

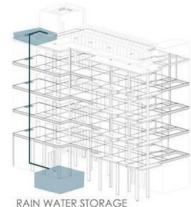
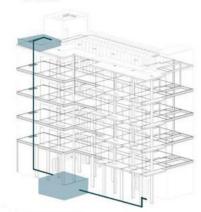

FRONT ELEVATION
Noise absorbing panels integrated on front
facade that converts into electrical energy

Fig 22: Design Strategies



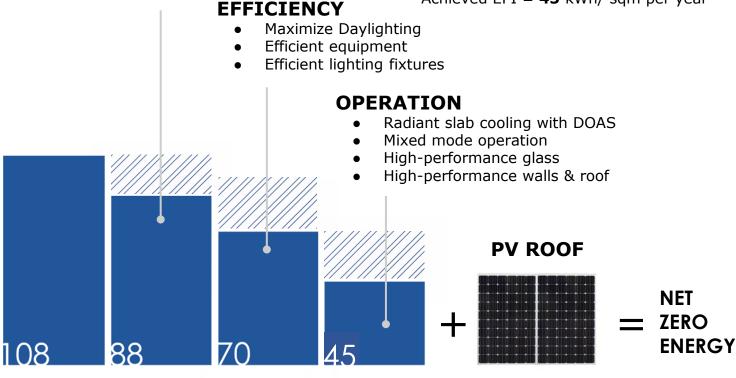
Radiant cooling system with DOAS system

RAIN WATER STORAGE Rain water on site is collected to meet the demands

FRESH WATER Rest of the the demand is met by municipal supply, surface runoff & ground water

GREY WATER TREATMENT 100% treatment on site by Evapo-trapiration & Infiltration

ENERGY PERFORMANCE


PASSIVE DESIGN

- Envelope Optimization
- Shading
- Irresistible Staircase to discourage elevator use
- Natural Ventilation

Target Energy

Performance Index

GRIHA benchmark for EPI = **108** kWh/sqm per year Achieved EPI = **45** kWh/ sqm per year

BUILDING EPI

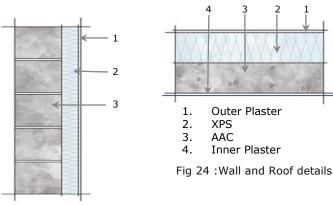
- ENERGY PERFORMANCE INDEX

Fig 23: The path to net zero building

Building massing and orientation, as well as insulated walls, control heat gain. The building's windows face south and north to improve daylighting and solar control. Several simulations and analyses were done to get the final proposed design.

Our goal to achieve net-zero energy building is done by using several passive design strategies, efficient lighting fixtures and equipment and an optimized HVAC system

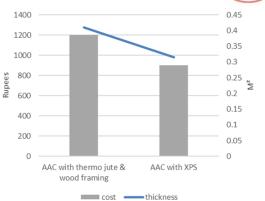
In targeting net-zero energy we calculated the amount of energy falling on-site from the sun and noise from the streets that is converted into electrical energy using high technology & innovative methods.

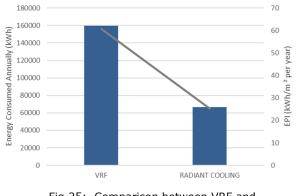

In the context of lying in a hot & humid climate, the major concern was to minimize heat gains in the building. This was achieved by using natural ventilation for passive cooling and a radiant cooling system with DOAS.

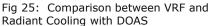
Simulation software made it easy to analyze the design to get better results. Daylight analysis also helped us in massing the project.

Envelope Optimisation

Building massing and orientation, as well as insulated walls, control heat gain. The building's windows face south and north to improve daylighting and solar control. Several simulations and analyses were done to get the final proposed design.

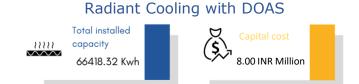



Fig 23: Comparison between AAC blocks with XPS and thermo-jute with wood framing


Façade Direction	WWR
North	40%
South	25%
East	10%
West	4.5%

	WALL	ROOF	WINDOW
STANDARD DESIGN	Outer cement plaster 0.01m +XPS 0.07m+ brickwork 0.2m + inner cement 0.01m U VALUE - 0.4	Cement plaster 0.01m +XPS 0.00m+ RCC slab 0.15m + inner cement 0.01m U VALUE - 0.33	6mm (solar control glass) - 12mm air gap - 6mm clear glass U VALUE - 3
PROPOSED DESIGN	Outer cement plaster with AAC 0.225m +XPS 0.08m+inner cement 0.012m U VALUE - 0.22	Outer cement plaster 0.01m +XPS 0.015m+ RCC slab 0.15m + inner cement 0.012m U VALUE - 0.21	Vertical sealed double glazed window - 20mm air gap - ordinary glass of medium coloured having SHGC 0.22 U VALUE - 1.95

Table 6 : U- Values


HVAC Optimisation

HVAC optimization has been done with respect to the functionality in spaces which includes workstations, cabins, conference rooms, reception and manager and assistant cabins. Several analyses and simulations were done considering Baseline, VRF and Radiant Cooling with the DOAS system that helped in energy reduction.

DOAS- dedicated outdoor air system VRF- Variable refrigerant flow

Solar Potential

The site receives an average solar irradiance of 5.5kWh/sqm per day which promises a positive solar potential. The horizontal terrace receives maximum solar irradiance compared to the building facade. The solar panels are placed on the terrace as well as mumty to meet the demands of energy requirements. PVWatts was used to calculate the solar energy generated on the site. Along with a solar array, sound-absorbing panels on the west facade have the capacity to generate 3kW and energy savings of 4512kWh.

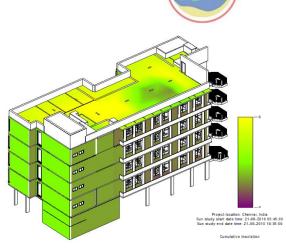
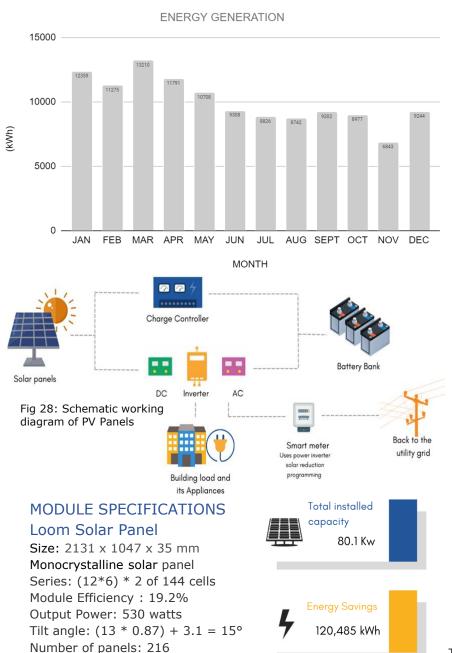



Fig 26: Solar Irradiance simulations

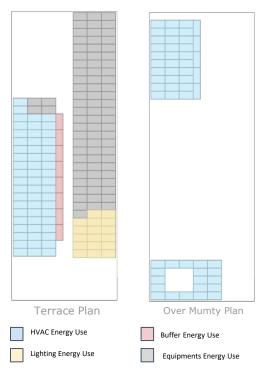
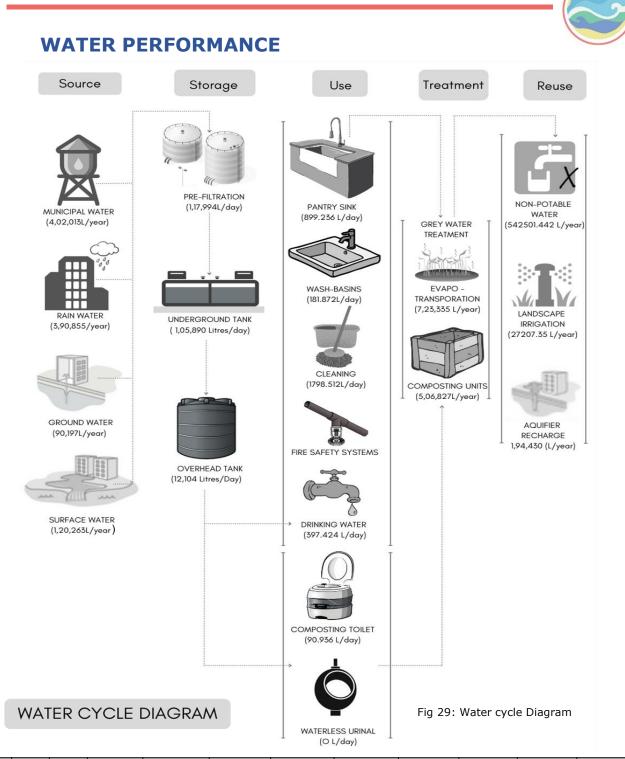
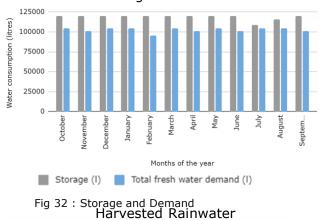
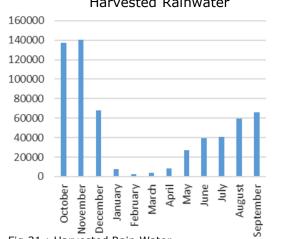



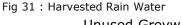
Fig 27: Solar PV Layout

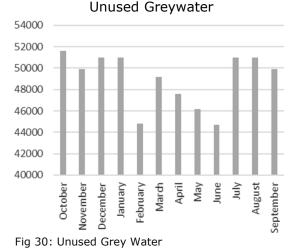
Month	Solar Radiation (kWh/m2/day)	Electricity Generation (kWh)
JAN	6.6	12359
FEB	6.75	11275
MAR	7.25	13210
APR	6.74	11791
MAY	5.85	10708
JUN	5.21	9308
JUL	4.74	8826
AUG	4.67	8742
SEPT	5.12	9202
ОСТ	4.87	8977
NOV	3.69	6843
DEC	4.84	9244
ANNUAL	5.53	120485

Table 7: Solar radiation and electricity generation


Months	Days in month	Rainfall (mm)	Effective rain (mm)	Harvested water (I)	Municipality water supply (I)	Primary demand (I)	Grey water generated (I)	Irrigation seasonal factor (%)	Irrigation Water demand (I)	Unused grey water (I)	Total fresh water demand (I)	Storage (I)
October	31	223	218	137422	68758	104408	61392	10%	604.5	51599.5	104408	120000
November	30	228	223	140574		101040	59412	10%	585	49935	101040	120000
December	31	113	108	68081		104408	61392	20%	1209	50995	104408	120000
January	31	17	12	7565	68758	104408	61392	20%	1209	50995	104408	120000
February	28	9	4	2522	62659	95146	55946	50%	2754.375	44818.625	95146	120000
March	31	11	6	3782	68758	104408	61392	50%	3022.5	49181.5	104408	120000
April	30	18	13	8195	66540	101040	59412	50%	2925	47595	101040	120000
May	31	48	43	27106	68758	104408	61392	100%	6045	46159	104408	120000
June	30	68	63	39651	66540	101040	59412	100%	5850	44670	101040	120000
July	31	70	65	40974		104408	61392	20%	1209	50995	104408	108770
August	31	99	94	59255		104408	61392	20%	1209	50995	104408	115822
September	30	110	105	66190		101040	59412	10%	585	49935	101040	120000


Table 8: Water balance




An effective water cycle has been developed to minimize daily fresh municipal demand. The usage of water-efficient fixtures has resulted in a 62.58% reduction from the base case. Rainwater harvesting was explored and implemented. This helped reduce the freshwater demand by more than 50%. Treated greywater is used as an alternate source of water for the non-potable purpose. In the monsoon months, extra grey water is used for ground recharge.

Storage & Demand

daily consumption	Number of occupants	Total daily consumption	Grey water filter efficiency
16.84	200	3368	75%

Table 9: Per Capita Consumption

Months	Days in month	Generated black water	Generated Grey water	Filtered grey water
Oct	31	43016	61392	46043.928
Nov	30	41628	59412	44558.64
Dec	31	43016	61392	46043.928
Jan	31	43016	61392	46043.928
Feb	28	39200	55946	41959.386
Mar	31	43016	61392	46043.928
Apr	30	41628	59412	44558.64
Мау	31	43016	61392	46043.928
Jun	30	41628	59412	44558.64
Jul	31	43016	61392	46043.928
Aug	31	43016	61392	46043.928
Sep	30	41628	59412	44558.64
Total :		506827	723335 ater and greywate	542501.442

Table 10	10. Diackwater and greywater generated			
Water harvesting Sources	Area	Runoff coeff		
Roof Surfaces	548.09	0.85		
Hardscape areas	170	0.7		
Softscape areas	130	0.35		
Effective catchment area :		630.3765		

Table 11: Water harvesting sources

Municipality water supply (I/day)	4,436
Storage size (I)	120,000
Table 12 · M	luminimal augustu and stavage air

Table 12 : Municipal supply and storage size

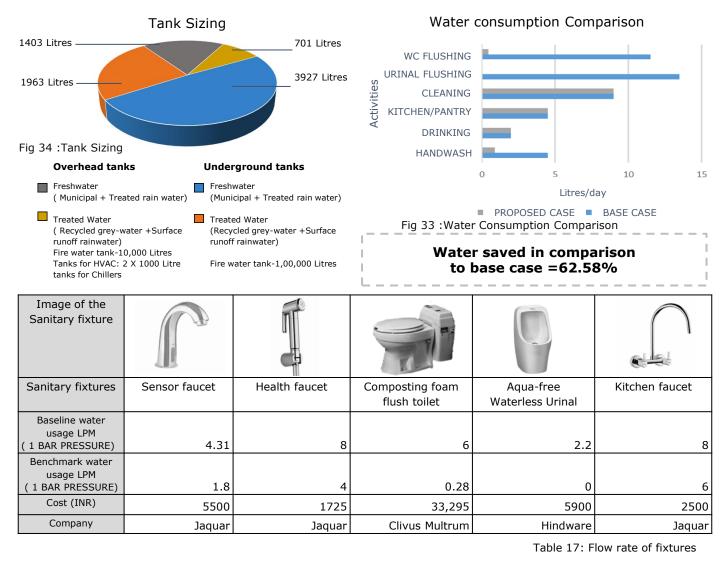
Water consumption point	Quantity	Liters/day
Occupants : {People x l/person}	200	16.84
Irrigation (max) : {m2 x l/m2}	130	1.5
Cooling tower (max) : {Ton x l/Ton}	37.23	3

Table 13: Water consumption per day

Note: Due to the usage of the radiant cooling system, water consumption would be minimal. Water required at the time of commissioning the system is 4000 Litres.

23

Base Case :							
Per-capita cons	Per-capita consumption per day : 45 Lts						
Activities	Domestic (Lts)	Percentage	44.4% of 45 Litres				
Handwash	4.5	10					
Drinking	1.98	4.4					
Kitchen/pantry	4.5	10					
Cleaning	9	20					
Activities	Flushing (Lts)	Percentage	55.6% of 45 Litres				
Urinal flushing	13.5	30					
WC flushing	11.52	25.6					


Table 14: Base Case water consumption as per NBC

Proposed Case :						
Per-capita consumption per day : 16.84 Lts						
Activities	Domestic (Lts)	Percentage	97.3 % of 16.84 Litres			
Handwash	0.9	5.3	80% reduction due to water efficient			
Drinking	1.98	11.8	fixtures			
Kitchen/pantry	4.5	26.7				
Cleaning	9	53.4				
Activities	Flushing (Lts)	Percentage	2.7% of 16.84 Litres			
Urinal flushing	0	0	Zero water flush			
WC flushing	0.46	2.7	Composting toilet :1 cup per flush			

Table 15: Proposed Case per-capita water consumption

Occupant's Activity	Percent usage	Quantity	Grey water	Black water
Hand wash	5.40%	181.872	100%	0%
Drinking	11.80%	397.424	0%	100%
Kitchen/Pantry	26.70%	899.256	0%	100%
Cleaning	53.40%	1798.512	100%	0%
Urinal flushing	0.00%	0	0%	100%
WC Flushing	2.70%	90.936	0%	100%

Table 16: Daily water consumption

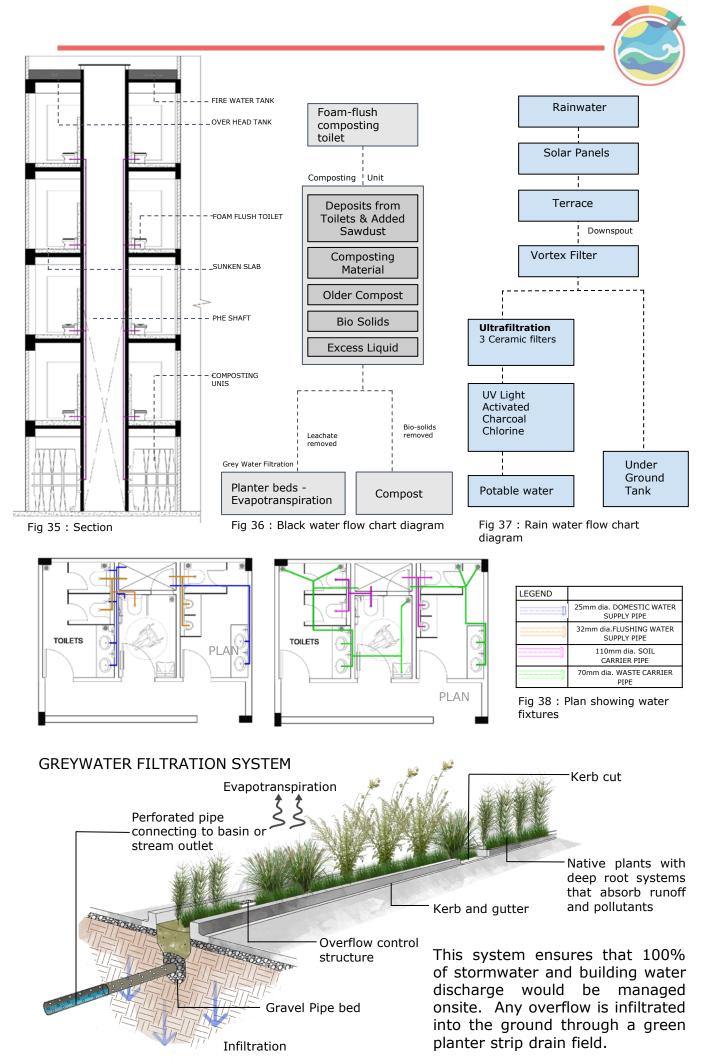


Fig 39: Green planter strip drain field.

ENGINEERING DESIGN AND OPERATION - Structures

The Structural Design of the Team Global office division building has been done in compliance with the soil condition and the Earthquake loads of Chennai, using STAAD.Pro software. The Design is an IS-456 Code complaint and has been done for M-30 Grade of concrete and Fe-550 Reinforcement

The design employs 2 types of typical orthogonal footing and 2 types of typical column sections as 750mmX200mm and 600mmX200mm in the entire project.

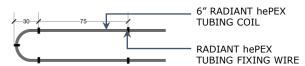
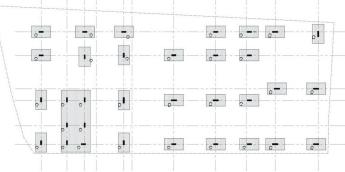



Fig 46 : Attachment detail of hePEX Tubing

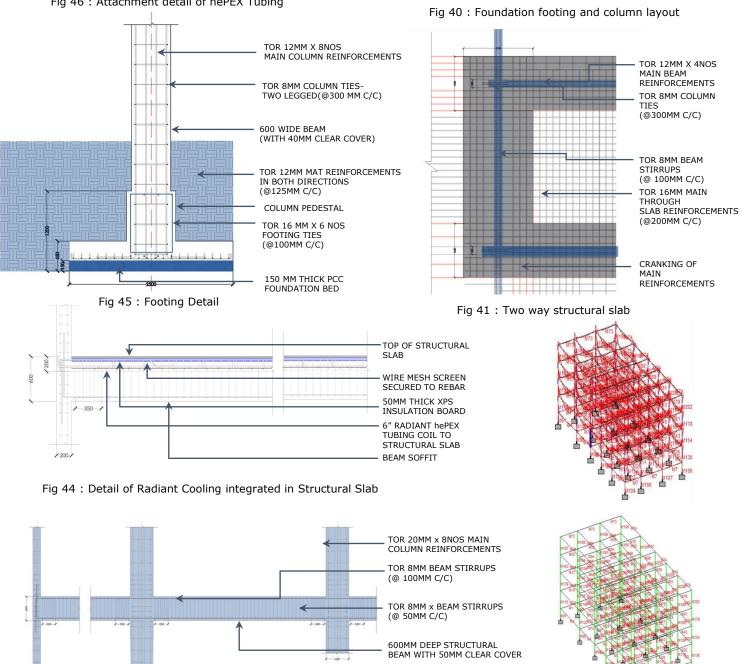


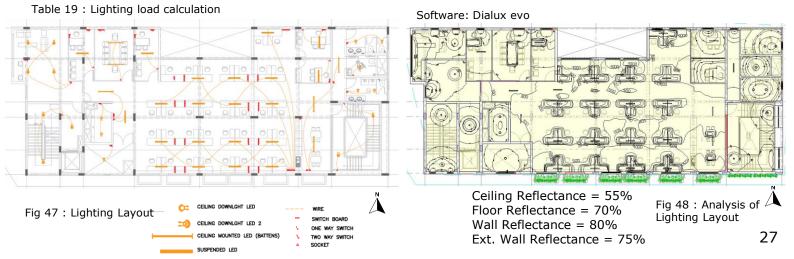
Fig 43 : Beam and Column Reinforcement detail

Fig 42 : Bending Moment analyses of Structural Beams and Columns

Lighting Load Calculation

Images of lighting fixtures			\bigcirc	
Type of lighting:	Suspended LED	Ceiling mounted LED(battens)	Ceiling downlight LED	Ceiling downlight LED 2
Company:	Philips	Philips	Philips	Philips
Average lumen received:	40000	20000	1000	2000
Wattage(W):	30	16	10.6	22

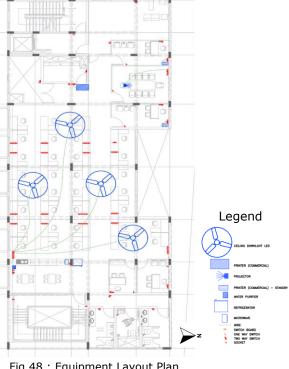
Table 18 : Rate of Lighting Fixtures


SI no.	Space Function	Target illuminance (lux)	Type of lighting	Company	Average lumen received	Watt (W)	Area	NOs.	Hrs per day	No. of days	Total hrs	Energy consumed annually (wh)
	Reception/											
1	waiting lobby	200	Ceiling downlight LED 2	Philips	2000	22	28.4	16	8	313	2504	869166.22
2	cabins	350	Suspended LED	Philips	4000	30	18.3	18	7	313	2191	1169446.25
3	Workstations	500	Suspended LED	Philips	4000	30	186.4	68	7	313	2191	4469640.00
4	Staircase	100	Ceiling downlight LED 2	Philips	2000	22	48	16	8	313	2504	881408.00
5	Lobby	100	Ceiling downlight LED 2	Philips	2000	22	9	4	8	313	2504	220352.00
6	Toilets	150	Ceiling downlight LED	Philips	1000	10.6	42	24	8	313	2504	637017.60
7	Pantry	200	Ceiling mounted LED(battens)	Philips	2000	14	18.6	4	1	313	313	17528.00
8	Storage	50	Ceiling downlight LED	Philips	1000	10.6	14	4	0.5	313	156.5	6635.60
9	Meeting Room	500	Ceiling mounted LED(battens)	Philips	2000	14	20	8	1	313	313	35056.00
10	Server Room	300	Ceiling downlight LED	Philips	1000	10.6	10.76	8	7	313	2191	185796.80
11	Passage	100	Ceiling mounted LED(battens)	Philips	2000	14	27	8	8	313	2504	280448.00

Total (Wh) :

8772494.47

8772.49


Equipment Load Calculation

Appliances	Cost in rupees	Power	
Farberware Classic FMO07ABTWHA Microwave oven	15,299	700	
Godrej 190 L 5 Star Inverter Direct-Cool Single Door Refrigerator	16,990	285	
High Volume low Speed (HVLS) Fan HF-12 B5	20,000.00	750	

Appliances	Cost in rupees	Power	
Dell Latitude series laptop	59,828	137	
Havells Exhaust fan (Ventil air) @200mm	1290	32	S
HP SMART TANK 750 WI FI DUPLEXER PRINTER	23,020	0.1 watts (off); 1.10 watts (sleep)	

Table 20 : Rate of equipments used

SI No.	Appliances	Nos.	Wattage	No. of hours per day	No. of days	Energy consumed annually (kwh)
1	Laptop	144	35	7	313	11042.64
2	Printer (commercial)- Standby	8	30	2	313	150.24
3	Printer (commerciall)	4	400	2	313	1001.6
4	Microwave	4	700	0.5	313	438.2
5	Refrigerator	4	285	24	313	8563.68
6	Water purifier	4	25	0.5	313	15.65
7	Projector	4	300	1	313	375.6
8	Water Pump	1	3000	8	313	7512
9	Lift	1	800	8	313	2003.2
10	Fan	16	750	7	90	7560
Fable 21 : Equipment load calculation					Total	38662.81

HVAC Load Calculation

Fig 48 : Equipment Layout Plan

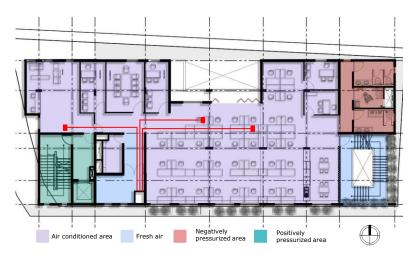
	COOLING LOAD IN BTU/H						
	SENSIBLE			TOTAL TR	No. of hours per day	No. of days	Energy consumed annually
FLOOR	LOAD	LATENT LOAD	TOTAL LOAD				kWh)
1F	108105	21533	129639	10.8	8	223	19267.2
2F	74231	21533	95764	7.98	8	223	14236.32
3F	74231	21533	95764	7.98	8	223	14236.32
4F	104067	21533	125601	10.47	8	223	18678.48
TOTAL	360634	86133	446768	37.23	То	tal	66418.32

Table 22 : Cooling load calculation

Fig 52: Slab detail of radiant cooling

PARTICULARS	STANDARD DESIGN	EFFICIENT DESIGN	
SENSIBLE LOAD IN TR	45	30	
LATENT LOAD IN TR	7	7	
TOTAL COOLING LOAD IN TR	52	37	
PLANT FOR SENSIBLE COOLING			1. Rautherm S pipe
CHILLERS	25 TR AIR COOLED SCROLL CHILLERS - 2 No.S	18 TR AIR COOLED SCROLL CHILLERS - 2 No.S	2. Surface sensor 3. System controller 4.PRO-BALANCE®
CIRCULATION PUMPS	251 LPM/20M HEAD - 3 NO.S (2 WORKING + 1 STANDBY)	182 LPM/20M HEAD - 3 NO.S (2 WORKING + 1 STANDBY)	anifold 5. Chiller plant 6. Pump
PLANT FOR LATENT COOLING			
TREATED FRESH AIR UNIT WITH DX COIL	2500 CFM X 1 NO.	2500 CFM X 1 NO.	
CONDENSING UNIT FOR TFA	5.5 TR X 2 NO.S	5.5 TR X 2 NO.S]

Table 23: HVAC Equipment



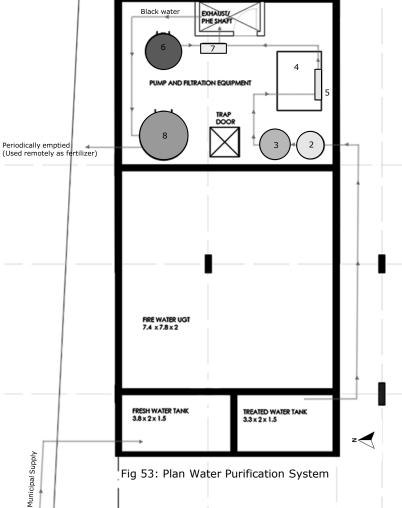

Fig 49: Operational Zones for Air-conditioning for typical office floor

Fig 50 : Section: Air conditioning system

Éig 51: HVAC Detail

Water Purification System

Legend

UnderGround Tank
 Filters
 Carbon Filter
 Chlorine Tank
 UV Light Disinfectant
 Pressure tank
 Pump
 Leachate Tank
 Composting Units
 Waterless Urinals
 Composting Foam Flush Toilet
 Over Head Tank

Wastewater treatment and reuse

It is estimated that 1387.6 litres of blackwater and 1980.3 litres of greywater are generated from the building every day. The wastewater is sent to the filtration room where greywater is passed through a series of water purification equipment. The surface runoff is infiltrated into the ground through a green planter strip drain field, which filters the water further through the process of evapotranspiration and time infiltration, at the same replenishing the groundwater.

HEALTH AND WELLBEING

The building is designed for a mixed-mode operation. It is naturally ventilated for about 30% of the operational hours and air-conditioned for the rest. This helps in achieving 100% comfortable operating hours throughout the year.

Optimizing the layout, zoning and the building allowed for better cross-ventilation of spaces and helped in maximizing the daylit spaces.

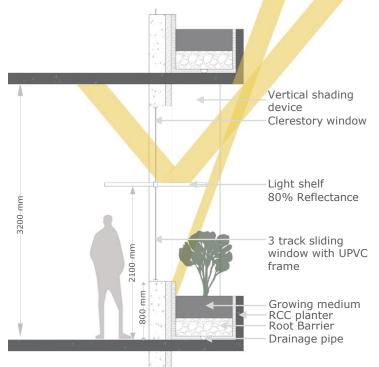


Fig 55 : Window detail section – Southern facade

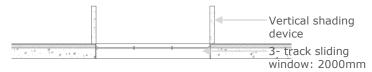
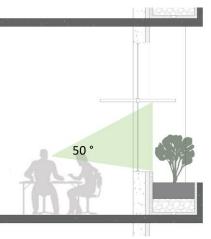


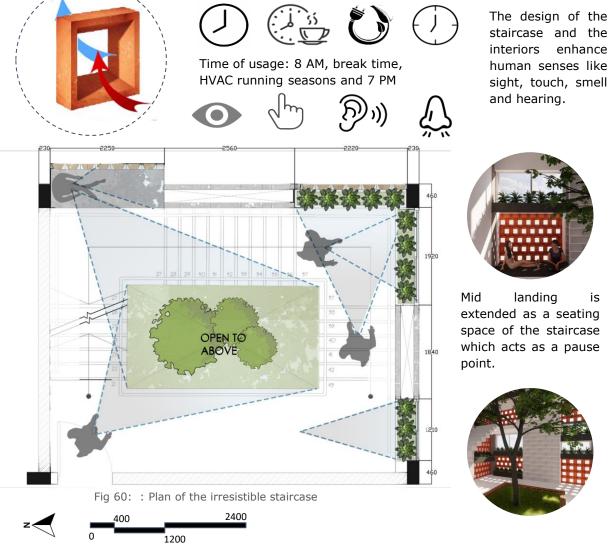
Fig 56 : Vertical shading device – Southern windows

Façade Direction	WWR
North	40%
South	25%
East	10%
West	4.5%

A popular 1989 study conducted by NASA concluded that plants are natural air purifiers. The study showed that through photosynthesis, the plants the carbon would convert dioxide we exhale into clean oxygen. Plants are also capable of removing toxins from the air we breathe like PM5 and PM10.

Hence, the window detail is integrated with planter boxes towards the southern side. The box has been designed such that it is visible from the work plane level, that is, at 750mm above FFL.




Fig 58: Assessment of sight angle of the occupant

Plant varieties like Areca Palm, Schefflera Raphis Palm, Venulosa, money plant, the peace lily, the weeping fig etc. are used both indoors and outdoors which help in improving the air quality as well as provides visual comfort to the occupants. Some of the above-mentioned plants also help in absorbing noise from the surroundings without affecting the humidity levels.

THE IRRESISTIBLE STAIRCASE:

For those occupants who are able, an "irresistible stair", with fresh air, connection with nature and a break time hangout area, promote stair use, and human health and reduces the usage of lifts.

The staircase to the east which is a little isolated from the workspace creates more like a buffer space for the employees of the office. The staircase design is intertwined with nature considering people's health and visual comfort.

Planter boxes with plants (weeping fig) of low maintenance and a small tree in the center of the staircase well create a visual connection with nature on every floor.

is

For those occupants who are able, an "irresistible stair", with fresh air, connection with nature and a break time hangout area, promote stair use, and human health and reduces the usage of lifts.

Silk Breathe Easy by Berger Paints eliminates lead, mercury and chromium from their paints and greatly reduced VOCs and the content of aromatics so that their products have no negative health impact. They are also anti-infection, anti-pollution and anti-bacterial and comes with a certified label by Singapore Green label.

Noise-Friendly Flooring: 1800mm high wall partitions help in separating the employees and reduce the overall noise to some extent as well.

·|||||1111----

(Initial analysis for workspace zone on AndrewMarsh)

LVT flooring is versatile alternatives thanks to its ease of maintenance and variety of design options. LVT flooring by itself boasts sound absorption qualities.

10 0.14 0.19 0.27 0.37 0.52 0.72 1.00 1.70 2.90 4.95 Lx I Cd/m2 00.0 15000.0 800 500 400 300 200 63: Annual Sunlight exposure, Useful daylight illuminance and daylight Autonomy Analysis Fia

INNOVATION

NOISE ABSORBING PANELS

With an aim to achieve net-zero energy, team Ecocult proposes the idea of making use of a renewable source of energy where we intend to produce our energy on-site as an addition to the grid.

The solution proposed is to make "NOISE BASED POWER BANKS" that make use of the sound, converting it into electrical energy which is used for lighting up the front facade and also acts as a backup option when stored in batteries. We tried to achieve this in two ways, one with the concept of a Piezoelectric system, that uses unique crystals to convert sound wave energy into electrical energy (which can be adapted in form of panels for facades once developed, but in our case used in the compound wall), second by using the circuit method system that uses speaker/mic/sound sensor to absorb sound.

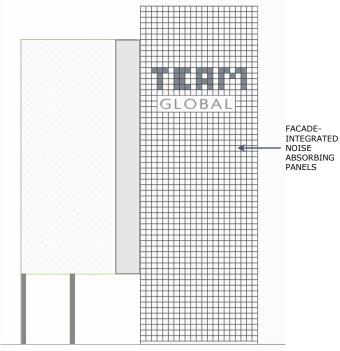
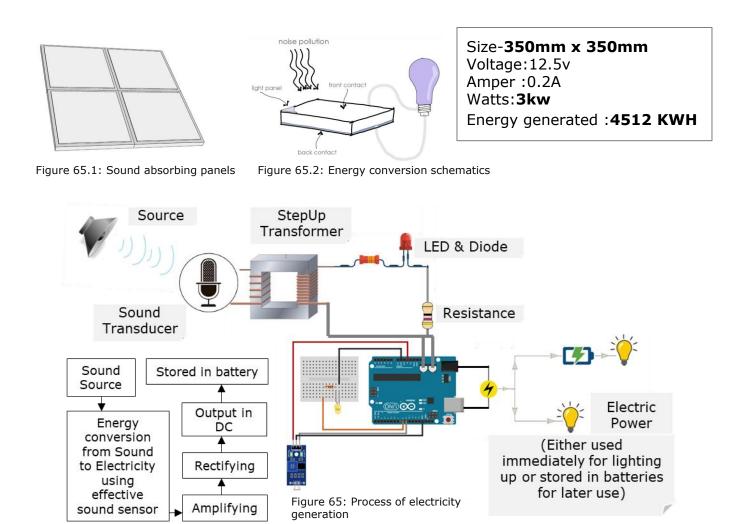
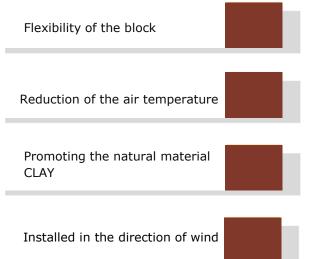



Fig 64: Front elevation



TERRACOTTA BLOCKS

The site (Mylapore, Chennai) is in a hot and humid climate, the main aim is to reduce the temperature and maximize airflow into the building. So the idea is to use the terracotta block (300mm x 300mm) which tapers into a 150mm x 150mm void to help reduce the air temperature which in turn reduces the cooling load.

This block is placed along the wind direction. It enables faster construction and adds character to the facade.

In addition, the nature-centric hangout area promotes the use of the 'irresistible staircase, improving human health and reducing the usage of lifts.

Less carbon footprint

FRANKE	<u>, I</u> ,	
		MANANA
	_	
	<u> </u>	
	03	
DEBEBBB		
		 ananan
	TT	
	4	
		NS 5 5 10 10
DEEDDEE	<u> </u>	
	TT	
	<u> </u>	
	T T	
	117	
	<u></u>	

П

Fig 66: Irresistible Staircase elevation

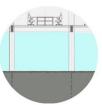
Fig 67: Terracotta Tile Block

Fig 68: Interior view of irresistible staircase

RESILIENCE

According to the hazard maps of India provided by BMTPC, hazards due to wind, cyclones and heat waves need to be considered.

Even though the site has not experienced any floods yet, it is better to design the building for floods as a few surrounding areas are prone to floods. The site has a basic wind speed of 50 m/s.


Wind and Cyclone Hazard

Trees are not present close to the building. Hence uprooting trees will not damage the building.

Fire Hazard

Emergency exits and firerated lifts are provided.

Flood Hazard

Stilt floors are provided for parking. This ensures that the working spaces are safe from floods.

Heat Waves Roof and wall sections with reduced U-values are

provided to reduce heat gain inside the building.

Earthquake

Zone 3 – Moderate Damage Risk Zone Structure is designed according to IS 456.

Adapting to the Pandemic

An open office plan is provided with partition walls in between for social distancing.

Grid Disruptions and Blackouts

Solar power backup is provided. Natural lighting and ventilation light shelves through and courtyards are needed to save a backup in case of a long power cut.

Social Resilience

Breakout spaces are provided. This will increase efficiency of the the occupants.

Preventive Measures for **Future Disasters**

Recovery Plan

Food Shortage

A roof garden is provided where garden crops can be grown.

Fig 69 : Resilience strategies

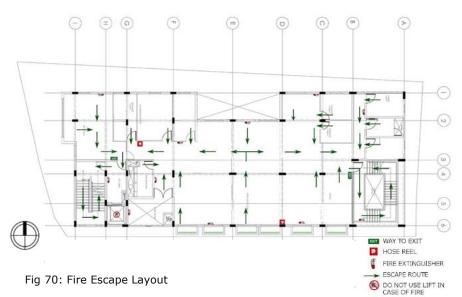
Sufficiency and Autonomy for critical functions

1. Water facility:

Water storage at a given point is 1,17,994 L. Water consumption is 3,368 L/day for working hours. Approximate, per day consumption = 3,368 * 2 = 6,736 L/day(Critical storage + Main storage)/ per day consumption = Days of Autonomy 1,17,994 / 6,736 = **17.5** days of Autonomy

2. Energy Efficiency:

Energy consumption per day is **1,13,853 kWh** which includes lighting, equipment and an HVAC system. The energy required is generated using Solar PV and soundabsorbing panels which are 1,20,485 kWh from the PV array and 4512 kWh from sound-absorbing panels.



Address immediate

Preventive Measures

SI no.	Risk	Preventive Measures		
1	Natural disasters	Preventive actions are considered for hazard resistant construction as mentioned earlier.		
2	Slips and trips	All areas are well lit including stairs to prevent slips and trips. East-west clear central corridor helps with efficient circulation.		
3	Stress and anxiety in working spaces	Open floor plan to make the working environment more transparent and democratic		
4	Lack of preparation during a risk	 Installation of a warning system and required drills for its use. Prior training of staff for various tasks in the emergency. 		

Table 24: Preventive Measures

Fire Safety Requirements

SI no.	Types of Fire Protection	Description
1	Fire Extinguisher	2 per floor with travel distance not more than 12 m.
2	Wet Riser	Provided at all floors.
3	Yard Hydrant	Provided all around the building
4	Automatic detection and Alarm System	For entire building
5	Automatic Sprinkler System	For entire building
6	Underground and overhead water tank	UGT – 1,00,000 litres OHT – 10,000 litres
7	Fire shaft	1 Fire rated lift and staircase
8	Emergency Lights	At staircase landing and exit routes.

damages in the distribution substations and supply lines

Clear obstructions on the western side (facing the main road) to permit transportation

Conduct repairs to restore communication and other utilities

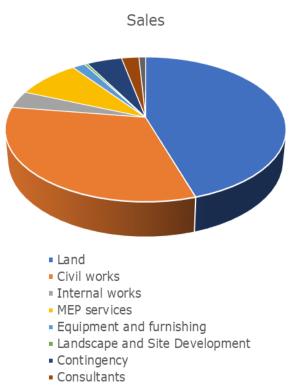
Recovery Plan

Fig 71: Recovery plan

Table 25: Fire Safety Requirements

AFFORDABILITY

Construction affordability for Developing Countries is one of the main issues associated with sustainable construction and sustainable development.


Despite international awareness of sustainable construction, the cost rates for construction activities and resources have been continuously increasing. Due to these increases, the approaches to be used to achieve sustainable construction through efficient and affordable techniques can be difficult to determine but can prove to be effective in the long run.

Energy-efficient buildings involve lower financial risks, as they are economical in terms of the operational costs involved which increases the belief amongst the stakeholders.

Also, by addressing important issues such as thermal comfort, visual comfort and indoor environmental quality, there is an increased resale value, and rental value and hence the return on investment becomes much faster.

Green buildings also attract loans at a lower rate of interest and a faster sanctioning process. These factors play a major role in funding for the execution of the project.

Although the proposed cost of the project is more than the baseline cost, the total operational cost is much lesser than the baseline project. This has been achieved by improving the building's performance through various strategies mentioned below.The Proposed case total cost is 3.7% higher than that of the baseline cost.

Pre-Operative expenses

Fig 72: Operation costs and financial breakups

Fig 73: Comparison of baseline and proposed building

BASE CASE V/S PROPOSED CASE

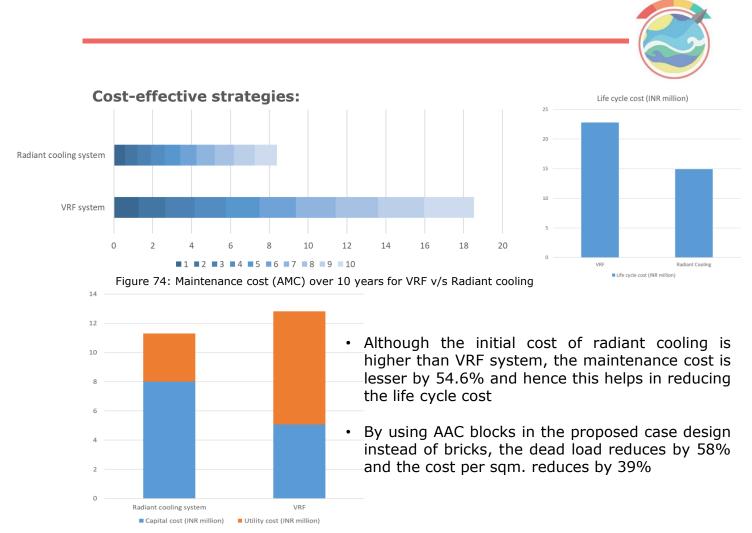
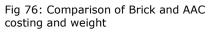



Figure 75: Radiant cooling v/s VRF

- Efficient planning to reduce circulation space by providing a single East-West corridor helps to increase the workspace area and in turn helps in the growth of the company.
- Since the service cores are limited to two corners, the functioning of the system is not disturbed.
- Healthier workspace with improved daylight facility and better indoor environmental quality reduces the cooling and lighting loads. Hence, the overall HVAC cost also reduces. This also, improves the productivity of the staff.

Main East-West corridor and secondary and tertiary corridors improve the circulation and communication in the workspace.

Fig 77: Corridors Layout

SCALABILITY & MARKET POTENTIAL

Chennai is home to more green buildings than any other city in the country, 42 of the 212 structures in India that are certified as eco-friendly by the Indian Green Building Council (IGBC) are in Chennai. Mylapore neighbourhood of Chennai is the central part and the cultural hub of the city. The proximity to the railway line enables easy accessibility and an increased public footprint. Other office and commercial buildings in a hot and humid climate. Analysis of user/customer group -

- Office employees (1:1 Male: Female ratio) of parent company
- Office employees (1:1 Male: Female ratio) of rental/ lease company
- Maintenance and service support

Potential target market -

makers

Contractors & developers

Investors Tenants

Architects & engineers

scale projects

Fig 79 : Irresistible Staircase view

Fig 78 : Potential Target Market

The current proposal has evolved through scrutinizing of the design iterations and simulations, with the potential to be the prototype model for an office building located at similar climatic region and context. The proposal caters to the current needs of the office space market & the needs of occupants at larger scale irrespective of being client specific.

By keeping this proposal as a prototype, with minimal changes as per the requirements, this building can be adapted to suit the needs of users in similar (Hot & Humid) climatic conditions, and scale irrespective of its typology due to the open floor plan proposal.

Apart from the building's potential to scale up, the two innovations proposed by the team- Terracotta modules, Noise Absorbing Panels have the potential to be market products.

TERRACOTTA MODULES:

With the standard block size being 300mm X 300mm with a 150mm X 150mm puncture for airflow, the modules can be customized as 200mm X 200mm with 100mm X 100mm airflow punctures. The cost of these blocks ranges from Rs.50-80 based on the customized requirements.

With faster construction, these prefabricated blocks can be inbuilt into the 115mm thick walls, facing the direction of the wind, further adding aesthetically pleasing effects to the facade breaking the building's monotonous outlook.

NOISE ABSORBING MODULES `:

According to the 2018 report prepared by the Central Pollution Control Board (CPCB) of India, Chennai topped the list of noisiest metro cities in India. Chennai has an average noise level of 67.8dB during the day. Therefore, to combat this issue along with keeping Net-zero energy in mind we have developed a Modular product' that can be easily plugged onto any surface with incident noise energy across all climates and typologies of the structure are proposed by our team.

Fig 80: Exterior View

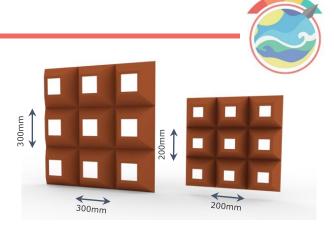


Fig 79 : Irresistible Staircase view

Required Component	Cost/Piece	
Control board - Arduino Uno	270	
LCD	220	
Speaker Mic	100	
Step-up Transformer	190	
LED	90	
Diodes	10	
LDR Sensor	5	
Circuit Wire	15	
Total Circuit Cost	900	

Table 26 : Cost analysis for circuit analysis

These modular products are designed in two modes - one as circuits and the other as panels for facades. The circuit system can be fixed at locations with noise potentials independent of buildings also. While the panels can be fixed on compound walls to light up the streets at night or incorporated into the building facades for aesthetics.

PITCH TO PROJECT PARTNER

SAT- PRANALI is a net-zero-energy-water building for Team Global Logistics' new regional office in Chennai. The building provides tenants/owner-based office spaces for a lease with a total built-up area of 2289.80 sqm. The building is designed to achieve optimal comfort throughout the year by using various strategies to improve daylighting and indoor air quality.

The building has a cut-out for natural light with a self-shading staggered west facade, the building is stacked up one floor above the ground. thermal comfort is achieved by wedging of the southern facade and green facade towards west and east. northern side has a recess for maximum daylight, The eastern facades are kept semi-permeable with green walls to allow max. airflow into the building.

A detailed climatic study was conducted to understand the combination of strategies that could be adopted to enhance the building's performance and achieve 100% comfortable operational hours.



Fig 81 : Exterior View

The proposed cost of construction is **Rs. 7.16 Cr** which is **3.7%** greater than the base case cost of construction which is **Rs. 6.64 Cr**

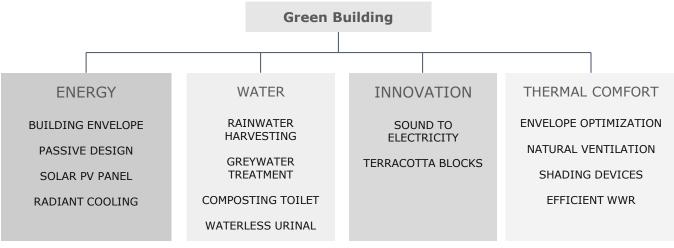
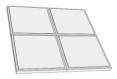



Fig 82: Flow chart of green building

Terracotta blocks that taper into a void help reduce the air temperature which in turn reduces the cooling load. These blocks are placed along the wind direction. It enables faster construction and adds character to the facade.

Piezoelectric system: NOISE BASED POWER BANKS are panels on facades that absorbs sound and converts it into electrical energy which can be used for various purposes during construction and post-construction and also can act as a backup option when stored in batteries.

REFERENCES

•ASHRAE Standard 55-2017, Thermal Environmental Conditions for Human Occupancy

•ASHRAE Standard 90.1-2016, Energy Standard for Buildings Except Low-Rise Residential Buildings

•Bureau of Indian Standards, 2016. NATIONAL BUILDING CODE OF INDIA VOL.1 & 2, 2016. Government of India

•Ministry of Energy Efficiency. (2017) ECBC Building Guide.

•Ministry of Energy Efficiency. (2017) Energy Conservation Building Guide •GRIHA Council and The Energy and Resources Institute. (2019) GRIHA Abridged Manual

•Ernst Neufert. (2012) Architect's Data.

•Tamil Nadu Combined Development and Building Rules, 2019

•https://bullittcenter.org/vision/message-from-denis-hayes/

https://www.wbdg.org/additional-resources/case-studies/bullitt-centerhttps://energyplus.net/weather-

location/asia_wmo_region_2/IND/IND_Chennai-Madras.432790_ISHRAE

